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Summary

Frontotemporal Dementia (FTD) is a neurodegenerative disorder which is 
characterized by behavioural abnormalities, language impairment, and deficits 
of executive functions. Behavioural variant FTD (bvFTD) and Primary Progressive 
Aphasias (PPAs) represent the most common phenotypes. The identification of 
mutations responsible for autosomal dominant inherited disorder, namely Micro-
tubule Associated Protein Tau (MAPT), Granulin (GRN) and chromosome 9 open 
reading frame 72 (C9orf72) mutations, contributed to elucidate the molecular 
pathways involved in brain depositions of either Tau or TAR DNA-binding protein 
43 (TDP43) inclusions. In FTD cases associated with pathogenic MAPT mutations, 
Tau accumulation in neurons and glia has been explained in terms of abnormal 
phosphorylation of the protein, or an altered proportion in the ratio of the 4R 
and 3R Tau isoforms; conversely, GRN mutation haploinsufficiency and C9orf72 
ex- pansion lead to TDP43 aggregation, with a less clear mechanism. However, 
in the majority of sporadic FTD patients, the molecular pathways triggering Tau 
or TDP43 protein deposition are still to be uncovered.  No risk factors other than 
genetic background have been recognised in FTD. An immuno-mediated inflam-
matory hypothesis to neurodegenerative processes has been claimed on the ba-
sis of epidemiological studies and genome-wide association analysis (GWAS). 
Moreover, for some cases of FTD language variants, an autoimmune condition 
has been suggested. In this review, a brief evaluation of literature data on immune 
homeostasis in FTD is presented, in order to provide potentially evidence-based 
approaches for a disease still orphan of any treatment.
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Introduction

Frontotemporal Dementia (FTD) is one of the most common neurodegenera-
tive conditions after Alzheimer Disease (AD). Most FTD patients are affected 
by progressive behavioral abnormalities, language impairment, and deficits 
of executive functions [1, 2]. The two main pathological hallmarks in FTD are 
represented by brain depositions of either Tau or TAR DNA-binding protein 43 
(TDP43) [3] selectively affecting the frontal and temporal regions. Pathogenic 
mutations in Microtubule Associated Protein Tau (MAPT), Granulin (GRN) and 
expansion on chromosome 9 open reading frame 72 (C9orf72) are the main caus-
ative genetic factors and the identification of these genes contributed to a major 
understanding of the disease. Nevertheless it is still unknown whether Tau and 
TDP43 deposits represent the initial mechanism or simply the result of other un-
known environmental, genetic or inflammatory factors [4-9]. At present, though 
genetic background is still considered the major determinant of the disease [10, 
11], evidences from different sources highlighted the role of inflammation in 
agreement with several discoveries in Autoimmune Encephalitis (AIE) which 
contributed to modify the paradigm of the Central Nervous System (CNS) as an 
immune privileged-site [12]. 

The contribution of GluR3 autoantibodies to FTD etiology 

In FTD, different observations argued for an immune system involvement 
and significant prevalence of autoimmune disorders has been observed [13, 14, 
15]. Genome-wide association analysis (GWAS) in FTD found a significant en-
richment for elements of the immune system involved in antigen presentation, 
including the HLA-DR5 locus [16] and granulin has been associated with in-
flammatory and wound response [17]. Again, in TREM2 T66M knock-in mouse 
models there is a dysfunction in microglia and aberrant glucose metabolism in 
the frontal lobes [18]. Recently, our group reported anti-α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid receptor (AMPAR) antibodies in a significant 
proportion of patients fulfilling clinical diagnostic criteria for FTD [19, 20, 21]. 
On the other hand, emerging evidence of frontotemporal areas involvement in 
autoimmune CNS disorders has been increasingly reported in the past years. 
More generally, antibody-associated neuronal autoimmune diseases has become 
a heterogeneous group of syndromes mainly divided into two groups: classic 
paraneoplastic syndromes (PNS), linked to the presence of a specific systemic 
cancer, and autoimmune encephalitis (AIE), with antibodies directed towards 
the extracellular domain of surfaced neuronal proteins, causing direct neuronal 
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injury [22, 23, 24]. In the absence of neoplasia, the etiopathogenic mechanism un-
derlying autoimmune activity has been less understood. The first auto-antibody 
to be identified, against GluR3, was in Rasmussen’s encephalitis, in 1950s [25, 26]. 
Moreover, in the autoimmunity CNS disorders spectrum, limbic encephalitis is 
a well-recognized condition, defined as a subacute onset of short term memory 
loss, behavioral changes and seizures, mainly involving the temporo-medial 
lobes and the amygdalae, with variable evidence of CSF inflammation [27]. Dif-
ferent types of neuronal antibodies have been recently identified and, specifical-
ly, antibodies directed against voltage-gated potassium channels (VGKC-Abs) 
are often associated with limbic encephalitis, presenting with seizures, amnesia 
and medial temporal lobe inflammation [28-29]. Predominantly in young wom-
en, another type of auto-antibody, directed against the N-methyl- D-aspartate 
subtype of ionotropic glutamate receptors (NMDAR) has been identified, which 
seems to be commonly associated with a prominent movement disorder [30-
32]. Dysfunction of glutamatergic signaling can also result in limbic encepha-
litis when the immune system attacks the AMPA glutamate receptors, which 
mediate the majority of fast excitatory synaptic transmission in the CNS [33]. 
Patients affected are usually women older than 50 years old, who present with 
subacute memory loss, confusion, agitated behavior, and seizures. Remarkably, 
in the last decade new autoimmune synaptic antibodies have been discovered, 
namely anti-Leucine-rich glioma inactivated 1 (anti-LGI1), anti-contactin-asso-
ciated protein-like 2 (anti-Caspr2), and anti- γ-aminobutyric acid class B (anti-
GABAB ) receptors [29] thus underlining the role of antibody-mediated attack to 
neuronal structures [33]. 

Toward an alternative GluR3 autoantibodies dependent etiologic 
mechanism for FTD

The etiopathogenic mechanisms underlying CNS autoimmunity are still 
unknown, although an infective trigger has been proposed. Notably, 20% of 
patients with Herpes simplex virus encephalitis have relapsing symptoms, es-
pecially in children, without viral reactivation or response to acyclovir but, in 
some cases, they show anti-NMDAR antibodies [34] supporting the view that 
the infectious prodrome, whenever it occurs, represents an inflammatory event 
associated with CSF lymphocytosis. In fact, it has been proposed that the in-
flammatory reaction might be responsible for a temporary and/or localized 
disruption of the BBB, allowing antibodies to gain entry into the CNS [35-35]. 
Still it is unclear what drives regional vulnerability, but it has been claimed that 
serum antibodies might find facilitated conditions to penetrate into the brain 
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of patients through the heavily vascularized nasal mucosa and the olfactory 
sensory axons, as well as via the trigeminal nerve into the brainstem [37] though 
there is evidence that the expression of neuronal antigens is region-specific [38]. 
More importantly, serum IgA/IgM anti-NMDAR occurs in a significant num-
ber of patients with undefined dementia, characterized by higher frequency of 
CSF abnormalities, sub-acute or fluctuating disease progression and immuno-
therapy response [39]. Besides those reversible syndromes, clearly linked to a 
monophasic inflammatory immune-mediated reaction, increasing data seem to 
emphasize the link between inflammation and neurodegenerative processes. In 
fact, a robust demonstration of an autoimmunity process linked to neuro-degen-
eration, has been provided by the identification of IgLON5-antibody in patients 
with sleep disorders, abnormal behavior, movements and brainstem symptoms 
with a chronic progressive disease course; Tau protein aggregation has been 
observed in the hypothalamus, thalamus and brainstem in brain autopsy [40-
43]. Furthermore, an inflammatory contribution to neurodegenerative disorders 
pathogenesis has been hypothesized both in AD [12] both in the senile and pre-
senile populations [44]. With regard to FTD, though a substantial genetic com-
ponent has been reported in around 10-20% of genetic FTD cases [45-47], no 
substantial risk factors responsible for sporadic dementia have been identified 
yet. Notably, a genome-wide association study (GWAS) conducted on a large co-
hort of mainly clinically diagnosed FTD, has identified a significant association 
with the HLA locus, supporting the claim that neuro-degeneration might be 
triggered by the immune system [16]. Furthermore, Miller and colleagues have 
shown a higher prevalence of systemic autoimmune disease in semantic variant 
PPA (svPPA) patients [13] consistent with similar subsequent findings in FTD pa-
tients with C9orf72 expansion [48]. Another recent and substantial evidence of 
autoimmunity co-existence in neurodegenerative disorders has been proved by 
the detection of anti-AMPA GluA3 antibody in serum and cerebrospinal fluid 
(CSF) of a single FTD patient; the extension of the study to a large clinical series 
of FTD demonstrated a significant proportion positive for anti-GluA3 antibodies 
in serum as well as in cerebrospinal fluid [19-20]. As a matter of fact, the incuba-
tion of rat hippocampal neuronal primary cultures with CSF with anti-GluA3 
antibodies led to a decrease of GluA3 subunit synaptic localization of the AMPA 
receptor (AMPAR) and loss of dendritic spines. The significant reduction of the 
GluA3 subunit seems to correlate with increased levels of neuronal tau pro-
tein [20]. Altogether these findings argue for a potential role exerted by the dys-
regulation of the immune homeostasis in FTD, even though it has to establish 
at what stage autoimmunity plays an active role in neurodegenerative process. 
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Several neuroimaging studies including different autoimmune disease have 
shed some lights on the multifaced impact of immunomediated neuroinflam-
mation [49-54]. Despite normal findings in NMDAR encephalitis, longitudinal 
imaging studies showed that severe disease courses can result in hippocampal 
or mild global atrophy, with functional, volumetric and white matter changes in 
the hippocampus correlating with memory performance, disease severity and 
duration [48, 55]. Similarly, AMPAR and LGI1R encephalitis lead to hippocam-
pal atrophy later in their course [56-58]. Among others, the perisylvian region 
and the insula are the predominant site for signal abnormality and atrophy [31, 
59, 60], with evidence of asymmetrical insular and frontal atrophy correlating 
with epilepsy duration [61]. Similarly, FTD presents with a focal atrophic pattern 
affecting primarily the frontotemporo- insular structures [62, 63], even though 
different patterns may be identified, according to the presenting clinical syn-
drome [64-70]. Interestingly, in addition to white matter hyperintensities [71, 72], 
several studies have highlighted a common limbic involvement in FTD, even 
in the very early disease phases [73-76]. In the last years, microglial activation 
has become a novel target of PET tracers, such as radio-labeled PK11195, which 
binds to the translocator protein (TSPO). TSPO is localized on the mitochondrial 
membrane and it is only minimally expressed in the healthy brain, whereas 
overexpressed in neuroinflammatory disorders [77]. The application of TSPO 
imaging to neurodegenerative disorders has confirmed the concurrent presence 
of inflammation in many conditions, usually reflecting the regional distribu-
tion of the pathology [78]. With regard to FTLD, microglial activation has been 
demonstrated both in tauopathies [79, 80], and in TDP43 proteinopathies [81]. 
Interestingly, microglial activation has been described before the occurrence of 
overt anatomical changes in MAPT presymptomatic carriers [82] as well as in 
the less atrophic hemisphere of FTD patients [83]. These data in addition to open 
a new avenue have the potential of offering a therapeutic strategy for sporadic 
cases. Indeed, while patients with autoimmune encephalitis (i.e. anti-NMDA or 
anti-AMPA receptor encephalitis) are often seriously affected, these disorders 
have been shown to be responsive to immunomodulatory therapies [35, 84-87]. 
In the context of FTD, few case reports of antibody–associated encephalopathies 
(i.e. anti-VGKC, anti-NMDA and anti-AMPA-mGluR3) presenting as frontotem-
poral dementia–like syndromes have also shown initial beneficial responses 
after intravenous immunoglobulins, steroid infusions, or rituximab treatment 
[88-90]. Overall these findings contribute to expand the notion of possible thera-
peutic perspectives in the treatment of autoimmune related neurodegeneration, 
in which immunomodulating treatments could potentially reduce or revert the 
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intracellular accumulation of pathological protein aggregates. It has to acknowl-
edge that the very few available data may anticipate a new pathogenesis and 
treatment in FTLD for selected cases in whom an early diagnosis “autoimmune 
FTD” and a prompt treatment could be critical to prevent irreversible neuronal 
damage and reduce possible neurological sequelae.
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